Knowledge guided multi-filter residual convolutional neural network for ICD coding from clinical text
نویسندگان
چکیده
Abstract A common challenge encountered when using Deep Neural Network models for automatic ICD coding is their potential inability to effectively handle unseen clinical texts, especially these are only trained on a limited number of examples. This because rely solely the patterns and relationships present in training data, may not be able incorporate additional knowledge about between medical entities. To address this issue, we introduce KG-MultiResCNN— K nowledge G uided Multi -filter Res idual C onvolutional N eural etwork model, which combines examples with external from Wikidata Knowledge Graph (KG) order better capture The KG structured database that contains wealth information various entities, including concepts one another. By incorporating into our improve its ability predict codes new texts. In experiments MIMIC-III dataset, found KG-MultiResCNN model significantly outperformed baseline approaches. demonstrates effectiveness knowledge, addition examples, performance deep learning coding.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملImproved Inception-Residual Convolutional Neural Network for Object Recognition
Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملMemory Matters: Convolutional Recurrent Neural Network for Scene Text Recognition
Text recognition in natural scene is a challenging problem due to the many factors affecting text appearance. In this paper, we presents a method that directly transcribes scene text images to text without needing of sophisticated character segmentation. We leverage recent advances of deep neural networks to model the appearance of scene text images with temporal dynamics. Specifically, we inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2023
ISSN: ['0941-0643', '1433-3058']
DOI: https://doi.org/10.1007/s00521-023-08581-2